Genetic Variation II

Ira Hall, Ph.D.
Associate Director, McDonnell Genome Institute
Associate Professor, Department of Medicine
Washington University School of Medicine
ihall@genome.wustl.edu
~4 million germline variants

Environment

Cancer

~200 exomes

Extremes of phenotypic distribution for NHLBI-relevant traits

~7,000 exomes

Human Diversity

20+ mendelian diseases

~10^2 - 10^5 somatic mutations

Rare “Mendelian” Disease

Common “Complex” Disease

Cancer

Rare “Mendelian” Disease

Common “Complex” Disease

Cancer

(+ 10^2 - 10^5 somatic mutations)
Mapping disease genes in the 20th century

Karyotyping

Spectral Karyotyping

(1) Genome wide approaches: slow, laborious, inaccurate, low resolution (~10 megabases).

(2) High resolution targeted approaches: low throughput and expensive; one gene at a time (e.g., sequencing “suspicious” genes)

(3) Clever (but laborious and cumbersome) genome-wide screening methods

Germline:
- Linkage analysis: Huntington’s disease (1994)

Somatic (cancer):
- Cellular transformation to clone RAS (1982)
- Loss of heterozygosity (LOH) mapping to clone RB (1987)
- Representational differential analysis (RDA) to clone PTEN (1997)
2000-2003: Two “complete” human genomes

Public Project: (NIH + Universities)
10 years, $3 billion

Private Project (Celera Corp.)
2 years, $300 million

IMPORTANT: We refer to the genome sequence generated by the public project as the “reference genome”. The reference genome has been invaluable for medical research.
How does it work?

- Each “spot”, or “feature”, contains millions of identical single-stranded DNA molecules termed “probes”.
- DNA sequences with high nucleotide identity to a given probe on the array will bind to it strongly. Those with low identity will not bind (or weakly).
- By labelling DNA with fluorescent molecules, we can measure how many DNA molecules bind to each probe. This is a bit like DNA sequencing.
- We can directly compare two samples by labelling their DNA with different colors.
RNA expression microarray analysis

(1) Competitive hybridization

- Control Sample
 - mRNA extraction
 - Reverse Transcription, fluorescent labeling
 - Combine equal amounts and hybridize

- Experimental Sample

(2) Scan: measure fluorescence

(3) Identify differentially expressed genes
Genomic microarray design

Reference Genome

Gene A

Intergenic region

Gene B

RNA Isoforms

3’ RNA expression array

Transcriptome expression array

Genomic Array (Tiling array) (array-CGH) (CMA)

* not to scale
Array comparative genomic hybridization (array-CGH) a.k.a., Chromosomal microarray analysis (CMA)

(1) Competitive hybridization
Control Sample Experimental Sample

mRNA extraction
Reverse Transcription, fluorescent labeling
Combine equal amounts and hybridize

(2) Scan: measure fluorescence

Relative DNA copy number (experimental / control)

(3) Map copy number variants (CNVs) based on deviation of multiple contiguous probes.
SNP genotyping microarray design

Genes:
- Gene A
- Gene B

RNA Isoforms

3’ RNA expression array

Transcriptome expression array

Genomic Array (Tiling array) (array-CGH) (CMA)

SNPs:
- A/C
- G/T
- A/G
- G/C
- A/T
- G/C
- T/G

SNP Genotyping Array
Affymetrix SNP arrays

SNP probe design

Genomic Sequence

5´ TAGCCATCGGTA N GTACTCAATGATCAGCT 3´

SNP probe = 25 bases

Perfect Match
Mismatch

Allele ‘A’

Perfect Match
Mismatch

Allele ‘B’
SNP genotyping with Illumina bead arrays

- Hybridization is used to capture the correct DNA molecules
- A single base extension is used to genotype the SNP
- This approach produces much higher quality data than hybridization-based genotyping
Where does the content come from?

Publicly Funded Genomics Projects

- Human Genome Project
- Phase I HapMap Project
- CNV Project
- Phase II HapMap
- 1000 Genomes Project

Number of SNPs on an array

- 10k
- 500k
- 1M
- 5M
SNP genotyping platforms

<table>
<thead>
<tr>
<th>Platform</th>
<th>SNP probes</th>
<th>CNV probes</th>
<th>Cost/sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affymetrix 6.0</td>
<td>900K</td>
<td>950K</td>
<td>$450</td>
</tr>
<tr>
<td>Affymetrix Axiom</td>
<td>600K</td>
<td>11K</td>
<td>?</td>
</tr>
<tr>
<td>Illumina Omni5</td>
<td>5M</td>
<td>0?</td>
<td>$1000</td>
</tr>
<tr>
<td>Illumina Omni1</td>
<td>1M</td>
<td>100K</td>
<td>$450</td>
</tr>
<tr>
<td>Illumina OmniExp</td>
<td>720K</td>
<td>0</td>
<td>$250</td>
</tr>
</tbody>
</table>

Typical Caucasian is polymorphic at 3M sites, Africans a little more, East Asians a little less

Prices as of 2012
The genotyping challenge

Well-genotyped site:
99.99% of all sites

Serious batch effects: 1/10000 sites

(1/10000 x 1M sites typed = 100 hits!)
The importance of careful quality control

Predictive models for exceptional longevity

- Ninety percent of samples typed on 370K array, 10% of samples typed with 610K array
- 33 variants associated with longevity
- Trained model with 150 sites, classified centenarians and non-centenarians with 77% accuracy
- No validation of associated sites

A pretty sad “manhattan” plot

A nice plot for comparison

Reference
Strategies for a successful genomics project

Generate Discovery Data → Visualize Data

Make calls ← Visualize Data ← QC, Normalize

Visualize & QC Data → Validate Calls → Replicate Biology

Be suspicious! High-throughput genomic data is usually messy. It is very easy to be fooled. Often data exploration and “scrubbing” is the most important part of a project. Replicate results with independent samples and methods when possible. Amazing results are almost always wrong.
The impact of high-throughput genotyping

(1) Haplotype structure

International HapMap Project

(2) Genome Wide Association Studies

Patients → Patient DNA → Compare differences to discover SNPs associated with diseases → Disease-specific SNPs

Non-patients → Non-patient DNA → Compare differences to discover SNPs associated with diseases → Non-disease SNPs

“Manhattan” Plot
The impact of high-throughput genotyping

(3) Personal disease risk

$$GRS_i = \sum_{j=1}^{m} x_{ij}$$

(4) Human population history

(5) Personal ancestry determination
Genome sequencing costs: 2001-2017

Cost per Genome

Moore's Law

National Human Genome Research Institute

genome.gov/sequencingcosts
The $1000 Genome has finally arrived! (sort of)

- Caveat: The X10 cluster costs $10 million, and sequencing costs do not include labor, data storage, electricity, etc.
- **Throughput**: one run: 3 days, 165 genomes = ~20,000 genomes / year
- **Parallelism**: 3 billion molecules per flowcell, 2 flowcells per machine. 60 billion molecules are sequenced simultaneously.
A modern genome sequencing experiment

1. genomic DNA

2. Shear to desired length (~400bp)

3. DNA fragments

4. ligate adapters, size select

5. sequencing library

6. Illumina HiSeq

7. clusters on a flow-cell

8. 500 million paired-end reads ("read-pairs")

GGACTGAAACTTCATCTGTCTTTATAGATATGCGTGCAGC

5' GGTGTACGAATAGTTTCCTTTTACACTCCTTGACCATCCTAGC

---//--- GGACTGAAACTTCATCTGTCTTTATAGATATGCGTGCAGC

~100bp ~200bp ~100bp
Ideally, we would “stitch” reads together using the process of whole genome assembly to produce the complete diploid genome of that person, or tumor. This is not possible with second generation DNA sequencing data.

The raw data: 500 million read-pairs

Why is genome assembly so hard? Reads are short, the genome is big and complex.

- The human genome is an nasty beast: it is large, complex, and laden with repetitive elements.
- When repeat size exceeds read-length, it is impossible to assemble through them. This causes errors and gaps.
- Long-range sequence information (10-100 kb) is required to resolve complex regions. Short reads (~150 bp) do not suffice.

The genome (3.2 billion bp)
KEY POINT: We do not sequence human genomes from scratch with second generation technologies. It is too hard.

Instead, we infer genome variation by comparing raw sequencing data from a given individual (or tumor) to the high quality reference genome produced by the public human genome project in ~2003.

So, we are not really “sequencing genomes”. We are mapping genome variation, indirectly and imperfectly.
Aligning reads to the reference genome

(1) a read-pair (2 x 100 bp)
5' GGATGACAAATCATTTCCTTTACTCCTTGGACCTAGC -- GGACTGAAACTTCATCTGTCTTTATAGATATGCGTGCAGC 5'

(2) The human reference genome (~3 billion bp)

(3) Alignment of the “read-pair” to the reference genome gives coordinates describing where in the human genome the read-pair came from, and whether there are any sequence differences.

Reference genome: CTCCATCTAATGAACCTAG---CCACACACTCTGACTGCAATGCC
Your genome (one read): CTCCCGTCTAATGAACCTAGGATCCCACATCCACTGACTGCC---CAATGCC
To distinguish genome variation from sequencing and alignment errors, we weigh evidence from multiple reads.

REFERENCE GENOME (HAPLOID)

```
GCTATATAAATTGGTATCAATGGTTTTGGTCGTATCGGCCGTATCGTATTTTCGGTGCAAGCAAAACACCCTGTATGAC
```

```
TAAAATTTGGCAATCAATGGTTTTGGTCGTATCGGCCGTATCGTATTTTCGGTGCA
AAATTGGTATCAGTGGTTTTGGTCGTATCGGCCGTATCGTATTTTCGGTGCA
ATTTGGTATCAGTGGTTTTGGTCGTATCGGCCGTATCGTATTTTCGGTGCA
GTATCAATAATGGTTTTGGTCGTATCGGCCGTATCGTATTTTCGGTGCA
ATCAATTGGTTTTGGTCGTATCGGCCGTATCGTATTTTCGGTGCA
```

10 READS AlIGNED TO REFERENCE GENOME (read length = 50 bp)

```
CAATGGTTTTGGTCGTATCGGCCCCGTATCGTATTTTCGGTGCAAGCAAC
ATTTGGTATCAGTGGTTTTGGTCGTATCGGCCGTATCGTATTTTCGGTGCA
GGTTTTGGTCGTATCGGCCCCGTATCGTATTTTCGGTGCAAGCAAC
TTTTGGTCGTATCGGCCCCGTATCGTATTTTCGGTGCAAGCAAC
```

IMPORTANT: To do this, we must sequence each base in the genome multiple times. The number of times, on average, that each base in the genome is sequenced is termed **coverage**. Today, the industry standard for Illumina whole genome sequencing is >30X coverage relative to the haploid reference genome. Since our genomes are diploid, this corresponds to >15X coverage for each chromosome.
How do we detect SNVs and small INDELs?

- Examine alignments at each base in the reference genome and assign genotypes with a probabilistic model that takes into account the sequencing error rate.
 - Generic: GATK, FreeBayes, SAMTools, SOAPSNP, etc. We use GATK and FreeBayes.
 - Tailored to somatic mutations: MUTECT, SPELKTRA, SomaticSniper.
 - Variant detection and genotyping improves under the assumption of diploidy.

- Handle INDELs with care
 - Alignment algorithms do a poor job aligning INDEL-containing reads.
 - Best variant detectors perform realignment around putative INDELs to reduce errors.
 - Newer methods perform local assembly to avoid alignment biases.

- In general, SNV detection is relatively “easy” and robust; INDEL detection is difficult and error prone.
Visualizing alignments with the Integrative Genomics Viewer (IGV)

~90X coverage whole genome sequence data (breast cancer)

Robinson et al., Nature Biotechnology (2011); http://www.broadinstitute.org/igv/
- ~4 million germline SNVs are detected in a typical whole-genome dataset.
- 1×10^2-10^5 somatic SNVs, depending on tumor and tumor type.
- Loss of heterozygosity can be observed at heterozygous germline SNVs.
- ~350,000 germline INDELs detected in whole genome sequence data, ~3000 in exome.
- Tens to thousands of somatic INDELs in tumors, depending on tumor and tumor type.
- INDELs are a common source of loss of function mutations.
Example of an INDEL alignment error

- Alignment errors make accurate INDEL detection hard, and can cause false SNV calls nearby.
This looks pretty straightforward, what’s the big deal?

There are a lot of artifacts. The genome is big and complex, the reads are short and error-prone.

Large, repetitive & polymorphic genome + short reads + heuristic aligners = systematic alignment errors.

Systematic alignment errors look like genetic variants.
Identification of poorly assembled regions of the reference genome showing abnormally high read-depth

This identifies 10,701 loci encompassing ~10 Mb (0.34%) of the genome.

Forcing reads to align where they do not belong leads to false variant calls (a particularly egregious example)
Variant detection sensitivity and accuracy

- **False positive = a false variant call. How do we reduce false positives?**
 - Document/fix genomic regions prone to artifacts
 - Simple filters: variant quality scores, mapping quality (uniqueness), read depth, etc.
 - Take intersection of multiple algorithms (but, increases false negatives)

- **False negative = a missed variant call. How do we reduce false negatives?**
 - Deeper sequencing (>100X).
 - Call mutations with lenient criteria, then perform large-scale validation.
 - Take union of multiple algorithms (but, this increases false positives)

- **How do we minimize both at the same time?**
 - Requires some knowledge of the truth. + Careful testing + Manual labor.
 - Machine learning using a training set of true positives and covariates. GATK variant quality score recalibration does this.
Tuning variant detection performance using receiver operating characteristic (ROC) curves

Requires: some relatively unbiased method for distinguishing true and false variant calls. Simulation, or independent data.

Approach: try a bunch of algorithms or parameters, measure performance.
Low overlap between different tools, even for the easiest task (100X exome data, normal samples, SNPs & indels)

Key points:
- 57.4% of SNVs called by all 5 tools.
- 26.8% of INDELs called by all 3 tools.
- Note: Alignment methods can also affect overlap among pipelines.
- Note: Parameter selection often more important than algorithm.
- Note: Overlap is increasing as data improves & strategies converge.

<table>
<thead>
<tr>
<th></th>
<th>sensitivity</th>
<th>specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNV</td>
<td>95.34%</td>
<td>99.72%</td>
</tr>
<tr>
<td>INDEL</td>
<td>???</td>
<td>61.8%</td>
</tr>
</tbody>
</table>

O’Rawe et al., *Genome Medicine* (2013)
Genome structural variation

Structural Variation (SV): Differences in the copy number, orientation or location of “large” genomic segments (e.g., >50 bp)

Other terms:
Genomic Rearrangements
Copy Number Variants (CNVs)
Mobile Element Insertions (MEIs)
SV breakpoints defined

Breakpoints are the junctions that define structurally variable genomic segments. SVs are usually detected based on the presence of these junctions the experimentally sequenced “test” genome, but not the reference genome.

However, “breakpoint” is an ambiguous term because it can simultaneously describe one junction in the test genome, and two junctions in the reference genome.

The VCF file format accounts for this ambiguity by introducing two new terms:

“novel adjacency”: the breakpoint in the test genome
“breakends”: the two breakpoints in the reference genome
3 ways to detect a structural variant (SV)

1) depth of sequence coverage
 = “read-depth analysis” (copy number variation)

2) “read-pairs” span a breakpoint
 = “paired-end mapping” (all classes of SV)

3) read contains a breakpoint
 = “split-read mapping” (all classes of SV)
Detecting CNVs with read-depth analysis

1) Count reads in sliding windows (e.g., 1 kb) of uniquely mappable genome sequence.
2) Normalize for GC bias.
3) Use segmentation to define CNVs (similar to array-CGH data).
4) Some methods predict absolute copy number, others compare two samples.
5) Lots of read-depth methods. What do we use? CNVnator + in-house tools.
GC normalization of Illumina Data

Raw Data

Normalized Data

Read count per 5 kb window

GC Fraction per 5 kb window

Normalized GC Fraction per 5 kb window

Normalized GC Z-score

All Windows

33–34% GC Windows

43–44% GC Windows
Detecting CNVs with read-depth analysis

Weaknesses:
1) Limited resolution (1-10 kb) = imprecise boundaries
2) Cannot detect balanced events or reveal variant architecture.

Strengths
1) Fast and simple.
2) Directly measures copy number
3) Relatively straightforward interpretation: is gene X duplicated, deleted, or amplified?

![Graph showing Copy Number (Z-Score) vs Genome Position](image)
CNV detection in single cells (male trisomy 21 fibroblasts)

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Chromosome</th>
<th>Copy Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIBR042</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>FIBR030</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>FIBR011</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>FIBR004B</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

3 ways to detect a structural variant (SV)

1) depth of sequence coverage
 = “read-depth analysis”
 (copy number variation)

2) “read-pairs” span a breakpoint
 = “paired-end mapping”
 (all classes of SV)

3) read contains a breakpoint
 = “split-read mapping”
 (all classes of SV)
Discordant paired-end alignments suggest breakpoints

Paired-end reads (readpairs)

Concordant readpairs (>99%)

Discordant read-pairs (<1%)

everted orientation
= tandem duplication

too big = deletion

same-strand = inversion

distant rearrangement

Illumina HiSeq

5' GGACTGAAACTTCATCTGTCTTTATAGATATGCGTGCAGC

5' GGTGTACGAATAGTTTCCTTTTACACTCCTTGACCATCCTAGC

size distribution

0 500 1000

Fragment Length (bp)

No. Fragments
Paired-end mapping algorithms cluster discordant alignments that “agree” with each other (support the same breakpoint)

too big (+/-) = deletion

everted (-/+) = tandem duplication

A deletion

A tandem duplication
Split-read mapping localizes breakpoints to base-pair resolution (more or less)

- Sanger Sequencing: ~500 bp read
- Roche/454: ~500 bp read
- Pacific Biosciences: ~5 kb read
- Illumina HiSeq: paired ~150 bp reads

Traditional split-read mapping
- align to genome
- Cluster reads (+/- a few bp)

PINDEL (Ye et al., 2009)
- align reads to genome
- sensitive split-read alignment at loci with hints of SV

Test
Ref.

Deletion
A - C
A B B C

Deduction
Test
Ref.

Deletion
A D
A B B C

NOTE: BWA-MEM now does joint paired-end and split-read alignment
Multi-signal SV detection using the LUMPY algorithm

By representing SV detection signals in a general way (breakpoint probability distributions), LUMPY can analyze them together, simply.

Layer et al., Genome Biology, 2014 (collaboration with Aaron Quinlan)
https://github.com/arq5x/lumpy-sv
A typical human genome has several thousand deletions.
Several hundred duplications
Several hundred inversions

breakpoint calls

3.8kb
Several hundred transposon insertions in the reference genome
Several hundred transposon insertions in the test genome
Tens of retrogene insertions

breakpoint calls

92kb
Tens to hundreds of complex variants

Important: we cannot infer variant class based solely upon relative read orientation; e.g., an apparent deletion may really be part of a complex rearrangement.

Note: 5-15% of SVs have complex breakpoints patterns (Quinlan et al., 2010, *Genome Research*; Conrad et al., 2010, *Nature Genetics*)
So, why is structural variation breakpoint mapping so hard?

(1) Lots of false positives
(2) Lots of false negatives
(3) Some structural variation breakpoints are virtually impossible to detect with current sequencing technologies
Three mechanisms for SV formation

(1) Homologous recombination (HR / NAHR)

Homology > 20bp

Sturtevant 1925

5-10% of SVs*

(2) Non-homologous end joining (NHEJ)

Homology ~ 0

Moore & Haber, 1996

>80% of SVs*

(3) Template switching during DNA replication

multiple breakpoints & microhomology (2-5p)

BIR: Smith et al., 2007
FoSTeS: Lee et al., 2007
MMBIR: Hastings & Lupski, 2009

5-10% of SVs*

*my guess; this is an open question
Recombination within a tandem array

A B B C
X
A B B C
↓
readpair
A B C

A B B B C

A B B B C
Recombination between large flanking repeats

Product 1: A B D

Product 2: A B C B’ C’ B” D

Readpair: ...
4) Complex rearrangements can produce extremely confusing breakpoint patterns

Definition: a variant with multiple clustered breakpoints that most likely arose through a single mutation, but cannot be explained by a simple end-joining or recombination event.

Implications:
- multiple simultaneous mutations = punctuated evolution
- novel mechanisms
- difficult to detect and interpret
CNAs are often linked by complex rearrangements

chr12:45Mb - 135Mb

breakpoints
red: direct orientation (deletion)
green: everted orientation (tandem dup.)
blue: inverted orientation (inversion)
grey: inter-chromosomal

COSMIC genes
Copy number (read-depth)
Somatic CNA “change-points”

Circos visualization tool: Krzywinski et al., 2009
Co-amplification of genes from different chromosomes

chr3:174-197 (23Mb)
Catastrophic chromosome shattering: Chromothripsis

GBM-6
chainID=1
253 breaks

chr1:0-100Mb
An extreme case of punctuated cancer genome evolution: one complex rearrangement, 5 fusion products
Chromothriptic Cure of WHIM Syndrome

David H. McDermott,1,14 Ji-Liang Gao,1,14 Qian Liu,1 Marie Siwicki,1 Craig Martens,2 Paejonette Jacobs,1 Daniel Velez,1 Erin Yim,1 Christine R. Bryke,1,12 Nancy Hsu,1,12 Zunyan Dai,1,13 Martha M. Marquesen,1 Elina Stregovsky,1 Nana Kwatemaa,5 Narda Theobald,6 Debra A. Long Priel,8 Stefania Pittaluga,7 Mark A. Raffeld,1 Katherine R. Calvo,8 Irina Marcic,6 Ronan Desmond,6,19 Kevin L. Holmes,1 Douglas B. Kuhrs,1 Karl Balabanian,11 Françoise Bachelier,11 Stephen F. Porosile,1 Harry L. Malech,5 and Philip M. Murphy1,4

Chromothripsy is a catastrophic cellular event recently described in cancer in which chromosomes undergo massive deletion and rearrangement. Here, we report a case in which chromothripsy spontaneously cured a patient with WHIM syndrome, an autosomal dominant combined immunodeficiency disease caused by gain-of-function mutation of the chemokine receptor CXCR4. In this patient, deletion of the disease allele, CXCR4R334X, as well as 163 other genes from one copy of chromosome 2 occurred in a hematopoietic stem cell (HSC) that repopulated the myeloid but not the lymphoid lineage. In competitive mouse bone marrow (BM) transplantation experiments, Cxc4 haploinsufficiency was sufficient to confer a strong long-term engraftment advantage of donor BM over BM from either wild-type or WHIM syndrome model mice, suggesting a potential mechanism for the patient’s cure. Our findings suggest that partial inactivation of CXCR4 may have general utility as a strategy to promote HSC engraftment in transplantation.

http://directorsblog.nih.gov/2015/03/05/shattering-news-how-chromothripsy-cured-a-rare-disease/