Bio5488 Midterm Equations

Equations

Poisson Distribution
\[P(x, \lambda) = \frac{e^{-\lambda} \lambda^x}{x!} \]

where
- \(e \) is the base of the natural logarithm (\(e = 2.71828... \))
- \(x \) is the number of occurrences of an event - the probability of which is given by the function
- \(x! \) is the factorial of \(x \)
- \(\lambda \) is a positive real number, equal to the expected number of occurrences that occur during the given interval

Binomial Distribution
\[P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k} \]

where
\[\binom{n}{k} = \frac{n!}{k! (n-k)!} \]
- \(n \) = number of trials
- \(k \) = number of successes
- \(p \) = probability of success

Gaussian or Normal Distribution
\[P(x, \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

where
- \(\mu \) = mean
- \(\sigma \) = standard deviation

Equation for calculating the log odds score for entries in a BLOSUM Matrix
\[score = \log_2 \left(\frac{P(\text{residues align} \mid \text{homology model})}{P(\text{residues align} \mid \text{random model})} \right) \]

Pearson Correlation Coefficient
\[r = 1 - \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) \]

where
- \(n \) = number of conditions
- \(\bar{x} \) = average expression of gene \(x \) in all \(n \) conditions
- \(\bar{y} \) = average expression of gene \(y \) in all \(n \) conditions
- \(s_x \) = sample standard deviation of \(x \)
- \(s_y \) = sample standard deviation of \(y \)
Sample standard deviation

\[s_x = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}} \]

where
- \(n \) = number of data points
- \(\bar{x} \) = average of the \(x_i \)
- \(x_i \) = each of the values of the data

Extreme value distribution

\[P(S \geq x) = 1 - e^{-\lambda(x-\mu)} \]

Bonferroni Correction

\[\alpha = \frac{\alpha}{g} \]

False Discovery Rate

\[n_{DE} \ast \alpha \]

Information content

\[I_{\text{seq}} = \sum_{j} \sum_{b} f(b, j) \log_2 \frac{f(b, j)}{p(b)} \]