


TT0Z ‘02 Jaqwadas uo B0 Bewaduslds MMM WO} Papeojumod



brass should have been present in both
pools, but those closely linked to the brass
locus should have been present predomi-
nantly in one pool or the other. The use of
haploids instead of diploids in this method
[called bulked segregant analysis (26)] elim-
inates the need to remove heterozygous
individuals from phenotypic pools in order
to identify markers associated in coupling
with either the mutant or the wild-type
allele of the gene under study. The analysis
identified several fragments that were am-
plified predominantly or exclusively in one
phenotypic pool but not in the other (Fig.
2A). These fragments became candidates
for genetic markers linked to brass.

To determine whether any of the candi-
date markers were indeed closely linked to
brass, we scored the 38 brass and 38 wild-
type haploid siblings individually for these
markers. These experiments confirmed that
two of the 48 original primers (13Al and
16AI) amplified DNA fragments that iden-
tify genetic markers linked to brass (Fig.
2B). The 16AI1.1190 DNA fragment ampli-
fied from all of the 10 wild-type haploids
shown but from only 1 of the 10 brass
haploids; thus, there was 1 recombinant
among the 20 haploids shown. In all, there
were 6 recombinants between brass and
16A1.1190 out of 76 haploids, indicating a

genetic distance of about 8 cM. Because
RAPD marker 16AI. 1190 had already been
localized to LG XIII (Fig. 1), brass must also
be localized to LG XIIIl. Another DNA
fragment amplified by the same primer
(fragment 16AI.900) (Fig. 2B) was un-
linked to brass (39 recombinants out of 76
haploids) and maps to LG XX (Fig. 1).
Primer 13Al amplified marker 13AI.800,
which had 0 recombinants with brass out of
76 haploids. Because 13A1.800 did not
segregate in the original linkage map cross
(Fig. 1), however, it was not informative
for LG assignment. To verify the location
of brass and to make a more complete local
map (Fig. 2C), we scored the 76 haploid
siblings segregating for brass for other near-
by markers in LG XIII. All LG XIII markers
that we tested and that were segregating in
the cross were found to be linked to brass.
The combination of the original linkage
map and the local map gave a composite
map (Fig. 2C).

With the use of this general strategy, we
mapped a total of nine loci identified by
mutation. These include the visible muta-
tions leopard (LG I) (27), brass®? (LG XIII)
(25), sparse”® (LG XX) (25), and albino®*
(LG XXI) (25), as well as the embryonic
lethal mutations floating head™ (LG XIII)
(28), throbless®?!? (LG VIII), no tail’%° (LG

XIX) (7), silent heart®'®® (LG XXVII), and
cyclops®’® (LG XII) (5). Linkage analysis
revealed that the cyclops®!® mutation is
associated with a chromosomal rearrange-
ment that obscures the precise location of
cyclops with respect to the other markers
shown. The map showed that the homologs
of two genes that are linked 15 cM apart on
chromosome 17 in mice [MHC class II gene
H-2Ab (15) and Brachyury] (23) are un-
linked in zebrafish [MHC class II locus
(DAB) (15) and no tail (7)] (Fig. 1).

Our results indicate that zebrafish em-
bryonic lethal mutations segregating in var-
ious genetic backgrounds can be integrated
quickly into the linkage map by simply
mating a mutant stock to either the DAR or
AB lines (or both) and performing haploid-
based bulked segregant analysis as described
here. A screen with RAPD primers of a
number of zebrafish stocks, including the
Singapore, Hong Kong, and German lines,
showed that most lines had many bands in
common with line AB (9), which suggests
that most of the loci described here will
segregate in typical crosses. The mapping of
most of the published SSRs (Fig. 1) further
demonstrates that this type of molecular
marker is also easily integrated into the
current linkage map.
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Fig 1. (Continued).
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with RAPD markers allows the rapid iden-
tification of DNA polymorphisms linked to
either the mutant or wild-type allele of any
gene in zebrafish. In mapping the nine
mutations mentioned above, about 1% of
the primers screened (18 out of 1778) iden-
tified a RAPD marker located within about
5 cM of any given mutant locus; thus, only
about 1000 decamer primers should be
needed on average to find a marker about
0.5 cM from any mutation. Some of the
mutant genes studied were very close to
their nearest RAPD marker—for example,
brass failed to recombine with its nearest
marker among 76 haploids and floating head
failed to recombine with its nearest marker
among 1332 haploids (29). A marker 0.5
cM away from a mutation should be on
average only about 300 kb from the mutant
locus, a distance that corresponds to about
four P1 clones and is shorter than a single,
large-insert yeast artificial chromosome
(30). Once closely linked markers are iden-
tified, the PCR products can be readily
cloned and sequenced. We have already
cloned more than a third of the codominant
markers plus a number of dominant markers
closely linked to various mutants. Some of
the cloned dominant markers segregate as
codominants in other crosses or can be
converted to codominant markers by re-
striction enzyme digests (31). The cloned
markers can also be used as probes in the

B 16Al brs* brs’
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initiation of chromosome walks (29).

The genetic map (Fig. 1) permits the
analysis of chromosome rearrangements,
which can expedite cloning experiments.
For example, Talbot (29) has shown that
the cyclops®*!*> mutation is a translocation
between LG II and LG XII. Mapping of
noncomplementing mutations that produce
related but distinct phenotypes can also
help test hypotheses regarding their genetic
basis. In addition, analysis of epistatic gene
interactions requires distinguishing double
and triple mutants from single mutant em-
bryos. Ambiguity can be resolved by the
extraction of DNA from pieces of the cau-
dal fin of breeding adults or from parts of
experimental embryos and then by assay for
RAPD markers closely linked and flanking
the mutation.

Such genomic analysis of fish may prove
useful in investigations of mammalian ge-
nomes. Genetic linkage relations in mam-
mals have been locally conserved over dis-
tances averaging up to 8 cM during 100
million years of mammalian divergence
(23). Linkage analysis of fish and amphibi-
an genomes has lagged behind, but studies
have revealed linkage relations that have
survived 400 million years of vertebrate
evolution (32), which suggests that the
primitive vertebrate gene arrangement may
have been largely preserved during fish evo-
lution. Brenner and co-workers (33) have
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Fig. 2. Mapping the brass locus. We collected haploid embryos from a heterozygous brass/DAR
female, scored their pigment patterns, and extracted their DNA individually. (A) DNA samples from
20 phenotypically brass (b) haploids were pooled, as was DNA from 20 of their wild-type siblings
(+). DNA samples from the two pools were amplified with 48 different RAPD primers, 10 of which
are shown (lanes 1 to 4, 6to 13, and 15 to 22; lanes 5 and 14 are 100-bp size standards; the bright,
third band from the bottom of the gel is 600 bp). Most fragments appeared in both pools, but
fragments 13A1.800 and 16A1.1190 and a few others seemed to be present only in one phenotypic
pool or the other, as expected for DNA fragments from closely linked genetic markers (26). (B) To
determine if marker 16Al.1190 was closely linked to brass, we scored the DNA of 38 brass (brs*)
and 38 wild-type haploid siblings (brs~) from a brass/DAR mother for the ability to amplify the
16Al.1190 fragment (upper arrowhead); the results from 20 of these haploids are shown here (lanes
2 to 21). The phenotype of the embryo in lane 20 reflects a recombination event between the
16Al.1190 marker and the brass locus. Marker 16A1.900 (lower arrowhead) assorts independently
of brass. Similar experiments were conducted with the other candidates identified in the bulked
segregant analysis experiments. (C) To integrate brass on the linkage map, we scored in haploid
offspring of the brass/DAR mother other markers previously shown (Fig. 1) to be linked to 16A/.7190.
Marker 1V.800 showed 6 recombinants with brass out of 60 haploids. Marker 5Y.450 did not
segregate in the cross. The local map (DAR x brass) constructed from these data was incorporated
into the larger linkage map with markers segregating in both crosses.
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suggested that the ordering of genes in a
fish may prove useful in the analysis of the
human genome. Because one can system-
atically collect embryonic lethal muta-
tions in zebrafish (2) [some of which are
phenotypically similar to mutations in the
homologous genes in mammals (7)] and
because the methods reported here will
facilitate map-based moleular isolation of
these genes, studies of zebrafish embryos
are likely to further our understanding of
developmental genetic mechanisms con-
served among all vertebrates, including
humans.
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Abnormal Development of Peripheral Lymphoid
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Mice rendered deficient in lymphotoxin (LT) by gene targeting in embryonic stem cells have
no morphologically detectable lymph nodes or Peyer's patches, although development of
the thymus appears normal. Within the white pulp of the spleen, there is failure of normal
segregation of B and T cells. Spleen and peripheral blood contain CD4+CD8~ and
CD4~-CD8* T cells in a normal ratio, and both T cell subsets have an apparently normal
lytic function. Lymphocytes positive for immunoglobulin M are present in increased num-
bers in both the spleen and peripheral blood. These data suggest an essential role for LT
in the normal development of peripheral lymphoid organs.

Lymphotoxin (LT, also designated TNEF-
B) is a soluble product of activated lympho-
cytes that was first defined by its cytotoxic
activity against fibroblasts (1-3). LT is now
recognized to be produced by activated
CD4* T helper cell type 1 (T1) lympho-
cytes, CD8* lymphocytes, and certain B
lymphoblastoid and monocytoid cell lines
(4-6). The gene encoding murine LT is
located 1100 base pairs (bp) upstream of the
evolutionarily related gene encoding tumor
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necrosis factor-a (TNF-a) within the ma-
jor histocompatibility complex (MHC) (7,
8). The LT and TNF-a proteins are struc-
turally related and show similar activities in
vitro and when given to experimental ani-
mals (9). In solution, LT is a homotrimer
with a conformation similar to that of
TNF-a. A membrane-associated form of LT
has been described, consisting of a hetero-
trimeric complex containing two LT mono-
mers together with a 33-kD transmembrane
protein designated LT-B (10). The gene
encoding LT-B is located immediately cen-
tromeric to the gene encoding TNF-a.. The
biological effects of LT and TNF-a are
mediated by two receptors, designated p55
and p75 (11).

In vitro, LT and TNF-a can modulate
many immune and inflammatory functions.
As implied by their names, both cytokines
are cytotoxic for a variety of transformed
and normal cell types (12-14). In order to
be killed, target cells must express LT—
TNF-a receptors, with the p55 receptor
appearing to mediate the cytotoxic response
(15). LT and TNF-a can augment the
proliferation of activated thymocytes (16)
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