Researchers at Washington University in St. Louis have received a $3.9 million grant from the Department of Energy (DOE) to develop bacteria that manufacture renewable biofuels — energy sources made from plants or microbes.
The researchers, representing a collaboration of investigators at the School of Medicine and the School of Engineering & Applied Science, seek to make biofuels whose production would not compete with the food supply. For example, ethanol is an alcohol-based fuel typically made from corn or sugar cane. Instead, the researchers will engineer microbes to make biofuels from a toxic waste product of papermaking called lignin.
In addition to using a bacterial species and raw materials not involved in food production, another goal of the project is to produce biofuels that could totally replace petroleum-based fuels. Today’s cars can burn fuel that contains 10-15 percent ethanol. But specialized engines are required when the fuel blend is mostly or entirely alcohol-based fuel. Renewable biofuels that are chemically indistinguishable from fossil fuels — such that they could replace current petroleum fuel within the country’s existing automotive fleet — would be a major development.
The grant supports research in five Washington University labs, including those led by co-principal investigators Gautam Dantas, an associate professor of pathology and immunology; Tae Seok Moon, an assistant professor of energy, environment and chemical engineering; Marcus B. Foston, an assistant professor of energy, environment and chemical engineering; Yinjie Tang, an associate professor of energy, environment and chemical engineering; and Fuzhong Zhang, an associate professor of energy, environment and chemical engineering. Hector Garcia Martin of Lawrence Berkeley National Laboratory is another collaborator.
The researchers are studying a type of bacteria called Rhodococcus opacus, originally discovered growing on toxic compounds outside a chemical plant. These bacteria thrive on these toxic compounds, using them as a source of food for the production of biofuels.